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Introduction
It is well known that non-Maxwellian electron

velocity distribution functions (VDFs) exist in plasmas
where there are sources of energy to sustain the
plasma state away from the usual Maxwellian equilib-
rium. Whether it be nonlinear many-wave interactions,
such as described by quasilinear theory for example1;
turbulence,2 a high-power laser heating a high-Z
plasma,3–7 or nonlocal heat transport in laser-produced
plasmas due to steep temperature gradients,8,9 non-
Maxwellian velocity distributions have long been iden-
tified for conditions that are readily accessible in
experiments today. A concrete example in laser-pro-
duced plasmas occurs when a strong enough laser irra-
diates a target such that the ionization state Z
multiplied by the ratio of the oscillatory energy of the
electrons in the field of the laser divided by their ther-
mal energy in the plasma is ≥ 0.1. Dum2 proposed a
family of super-Gaussian distribution functions that
can continuously vary from a Maxwellian (n = 2) to the
saturated (n = 5) limit later explored in laser plasmas
by Langdon and others.3–7 In the latter context, when
the laser intensity is sufficiently high, electron–ion
heating takes place fast enough that electron–electron
collisions cannot equilibrate the distribution, giving
rise to these novel states. Fokker–Planck simulations
have shown that such non-Maxwellian distribution
functions retain their shape even in the presence of
heat transport and other gradient-driven processes in
the plasma.6,7

An important area of current research in inertial
confinement fusion is the study of high-temperature
hohlraums,10 which have smaller dimensions than
scale 1 hohlraums typically used on Nova.11 These Au

hohlraums do not contain fill gases, and the laser
intensities used are in the 1016-W/cm2 or higher range.
Clearly, such conditions are ripe for the development
of non-Maxwellian distributions in the Au plasma. In
addition, the importance of non-Maxwellians has been
recently reinforced in two sets of Nova experi-
ments12,13 that used high-Z plasmas to study the
behavior of parametric instabilities14–16,11 such as stim-
ulated Raman scattering (SRS)—the decay of an elec-
tromagnetic wave (EMW) into an electron–plasma
wave (EPW) and a scattered EMW—and stimulated
Brillouin scattering (SBS)—the decay of an EMW into a
scattered EMW and an ion-acoustic wave (IAW). These
experiments recorded the reflected levels of SRS and
SBS as a function of the fractional composition of a
low-Z dopant in the high-Z, Xe plasma. The data show
that ion-wave properties do indeed affect SRS re f l e c-
tivities via modifications of the levels of secondary
i n s t a b i l i t i e s .1 2 , 1 3 , 1 7

All such arguments, however, in order to be made
quantitative, require that we know the frequencies and
damping rates of their constituent EPWs, EMWs, and
IAWs. Secondary instabilities such as the Langmuir
decay18–20 (LDI, the decay of an EPW into another
EPW and an IAW) and the electromagnetic decay21

(EDI, the decay of an EPW into an EMW and an IAW)
instabilities have been studied in the past but only
under the assumption that the velocity distribution of
the electrons is a Maxwellian. Our results indicate that
in the Xe experiments,12,13 LDI has a threshold compa-
rable to that of EDI and not the much higher one that
Maxwellian Landau damping would have implied.

In this article, we present the results of the first sys-
tematic and not-just-perturbative calculation of the
solutions of the plasma-dispersion relation in Dum-
Langdon-Matte (DLM) distribution functions.2 , 3 , 6

These are super-Gaussians whose exponents range
f rom 2 to 5. Previous attempts to address EPWs in DLM
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where the electron and ion susceptibilities are

(2)

and the electromagnetic Stokes (–) and anti-Stokes (+)
sidebands have the following dispersion relations:

(3)

The DLM VDFs may be written in the form

(4)

where      is proportional to the electron temperature
and the constant αe = [3Γ(3/n)/Γ(5/n)]1/2 is chosen to
ensure the proper definition of temperature in terms of
the second moment of the 3D distribution function.
The overall normalization factor is 

chosen so that the zero-order moment of the 3D distri-
bution function reduces to the density, Ne0. As the
DLM exponent n is increased from the Maxwellian
limit of n = 2 to the limit where electron–electron colli-
sions are entirely negligible, n = 5, the distribution
functions have increasingly more flattened cores and
depleted tails. The waterbag model is reached in the
limit n → ∞. Matte5,6 has obtained the connection
between the exponent n and parameters that character-
ize the laser-plasma system in steady-state constant-
intensity illumination simulations. With the laser
intensity I defined in units of 1015 W/cm2, laser wave-
length λ0 in units of 0.35 µm, and the electron tempera-
ture Te in keV, the conversion is 

The dispersion relation for an EPW in any
isotropic VDF is obtained by neglecting the coupling

distributions relied on first-order perturbation-theory
evaluation of the damping rate, which our results (see
F i g u re 1) show to be insufficiently accurate for the tasks
at hand.2 2 – 2 4 We also treat IAWs in DLM electron and
Maxwellian ion VDFs for the first time and find novel
changes in the behavior of IAWs.  Strictly Maxwellian
models have been routinely used to solve the kinetic
dispersion relations for SRS and SBS,2 6 , 2 7 , 11 s o m e t i m e s
including laser hot-spot models and additional
Maxwellian hot-electron tails in an attempt to bridge
the gap between theory and experiment.2 4 , 2 8 , 2 9 We
have developed a dispersion relation solver that calcu-
lates the Hilbert transform of any diff e re n t i a b l e
i s o t ropic distribution function. We restrict our attention
h e re to DLM VDFs because they provide an adequate
description of smooth transitions from a Maxwellian to
flat-top/depleted-tail VDFs as the laser intensity is
i n c reased in a moderate- to high-Z plasma. 

This article states the plasma dispersion relations to
be solved, sketches the solution method, and then shows
the frequencies and damping rates of EPWs and IAWs as
a function of wave-number and super-Gaussian expo-
nent n. In addition, we use a result obtained via the
Fokker–Planck simulations of Matte5 , 6 (which is an
empirical formula relating plasma temperature, ioniza-
tion state, and laser intensity and wavelength to a given n
s u p e r-Gaussian distribution function) to show damping
rates of EPWs as functions of these physical parameters.
This is strictly a conservative estimate of what would
happen in a spatially nonuniform intensity distribution.
An RPP (random phase plate)2 5 laser model is adopted
next and the gain of SRS calculated vs angle for diff e re n t
Z values. We observe that within a hot spot, not only will
the laser intensity be higher than average, but the inten-
sity-dependent damping rate of EPWs will be lower 
as well, making the spatial gain of the instability very
much larg e r, as it is proportional to the exponential 
of the spatial integral of the ratio of these two quantities.
Ramifications of these results for parametric instabilities
in moderate- to high-Z plasmas are discussed, and a new
model is put forward that seems to capture various seem-
ingly unrelated trends in the many outstanding pro b l e m s
that exist in the interpretation of Raman and Brillouin
backscattering experimental observations. 

The Theoretical Model
The linear theory of parametric scattering instabili-

ties taking into account kinetic effects was originally
presented by Drake et al.26,15 The dispersion relations
to be solved for Raman and Brillouin, for instance, are

(1)
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due to the pump as well as ignoring the (low-
frequency) ion susceptibility contribution in Eq. (1):

(5)

where the coefficient A describes the modified Debye
shielding properties in non-Maxwellian electron VDFs.
It renormalizes the temperature defined by the rule
that the average kinetic energy  be equal to (3/2)kTe,
giving rise to a new effective Debye shielding tempera-
ture boosted by this factor A. A is proportional to the
ratio of the second to zeroth moments of the VDF: 

(6)

(7)

and 

(8)

Here ζ = v/vth, and the thermal velocity is given by

(9)

The normalized phase velocity is ζ0 = vφ/vth, while the
function I(ζ0) is defined in terms of an integral along a
Landau contour:

(10)

These results are true for any isotropic VDF. Special-
izing to the case of DLMs, the energy to Debye shield-
ing temperature renormalization factor, A, defined in
Eqs. (6–8), becomes 

(11)

while the function I may be expressed as a principal
value integral plus a simple pole contribution:

(12)

(13)

(14)

For DLMs, it is convenient to use ζ0 = (ω/ωp)/
[αe(kλDe)] as the normalized phase velocity of an EPW.
The root finder must solve Eq. 5 for ζ0 given a value of
(kλDe)2. For n = 2, the function I(ζ0, n) reduces to the
Hilbert transform of a Gaussian, and is simply the
plasma dispersion function Z(ζ0).

For small kλDe, the integrands in Eqs. (13) and (14)
are sharply peaked at the pole location and therefore
sensitive functions of kλDe. This becomes more severe
as n increases and the tails become more depleted. For
example, in the case of the Maxwellian, the amplitude
of the integrand in II at the pole varies by a factor of
4.4, as kλDe is varied from 0.3 to 0.55, whereas in the
same range but for n = 5, II varies by four orders of
magnitude. A strategy is required in order to avoid
nonconvergence problems associated with finding
zeros of functions defined implicitly via integrals with
sensitive dependences on the independent variable.
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One such method is to start with small values of kλDe,
such as 0.2, and the Maxwellian VDF. By using the
analytic estimate for the root of the dispersion relation
found by perturbation theory, one can use a Z-function
evaluator to solve the dispersion relation instead of
calculating the Hilbert transform integrals directly.
Increasing values of kλDe can be treated by using the
roots at the previous value as a starting guess. Once a
kλDe of O(1) is reached, the I function evaluator can be
used to go to higher n in small increments. When the
desired n is reached, one may redescend to smaller val-
ues of kλDe, at that large n, using the latest root as a
guess. With this procedure, one may study small kλDe
values for any n without uncontrolled error accumula-
tion. This “morphing the distribution function” tech-
nique is not restricted to DLM VDFs. It would work as
well with any non-Maxwellian VDF ƒnM by the con-
struction of a set of intermediate VDFs including an
adiabatic switch ε, which would lead from the easily
computable VDF ƒ0 to ƒ0 + ε (ƒnM – ƒ0)as ε → 1.
Alternate criteria can be used to choose ƒ0, such as by
holding fixed the mean square error between itself and
ƒnM or by insisting that it be a sum of Maxwellians
with particle numbers, widths, and center locations to
be optimized to fit the particular VDF. In Figure 1, the

frequencies and damping rates of EPWs are plotted vs
kλDe for n = 2, 3, 4, and 5. The substantial reduction in
damping rates is clearly visible. Note that the first-
order perturbation theory results 

(15)

and

(16)

are inaccurate for kλDe > 0.3 in the Maxwellian case
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FIGURE 1. Frequencies and
damping rates of EPWs in
DLM VDFs normalized to the
local plasma frequency ωp vs
kλDe. The thick dashed curve is
the analytic result for Landau
damping of an EPW with n = 5,
and the solid thick curve is the
same for a Maxwellian (n =2).
The dotted curves with dia-
monds correspond to n =5, the
solid curves with open circles
correspond to n = 4, the dotted
curves with crosses correspond
to n =3, and the plain solid
curves correspond to n =2.
The dot-dashed curve with
filled squares is the Bohm–
Gross frequency.     
(50-00-0797-1177pb01)
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In contrast, IAWs in high-Z plasmas will not have
as dramatic a reduction in their damping rates. Instead,
it is easily shown that their real frequencies incre a s e
with n by roughly twenty percent. The reason for this is
the reduced number of cold electrons in higher-n d i s t r i-
butions and the concomitant reduction in shielding
available to the ions.  This is the physical explanation
for the parameter A defined in Eqs. (6) and (11). The
renormalized sound speed (or the square root of the
e ffective electron temperature) is given by the factor

(17)

I AWs in such plasmas will have variable fre q u e n c i e s
for the same k as they go in and out of laser hot spots and
inhomogeneities of the illumination. This constitutes an
additional source of dephasing for SBS, especially if the
s c a t t e red light is traveling at a large angle with respect to
the axes of the speckles. The perturbation theory re s u l t
for the complex IAW frequency is 

(18)

and

(19)

where , Te,i is the electron/ion tem-
perature, Z is the charge state, cs is the ion acoustic
speed, and . These are compared to the
numerical solutions of the IAW dispersion relation in
Figures 4 to 6 for different values of the wave number
of the ion acoustic wave and different electron to ion
temperature ratios.  

The effect of changing the sound speed as a func-
tion of local laser intensity should be included in con-
vective gain calculations for SBS that take into account
flow inhomogeneities and laser nonuniformities.30

For damping rates of the order of 0.1× the ion-acoustic

82

EFFECTS OF NON-MAXWELLIAN ELECTRON VELOCITY DISTRIBUTIONS ON PARAMETRIC INSTABILITIES

UCRL-LR-105821-97-2

FIGURE 3. Damping decrement of electron–plasma waves normal-
ized to the local plasma frequency 
for various values of kλDe.     (50-00-0797-1178pb01)

and much earlier for higher-n cases. For values of kλDe
of most interest in laser-plasma experiments today 
(0.2 to 0.5), the actual reduction in damping can be an
order of magnitude and thus must be incorporated
into any analysis of scattering data, as has been
recently deduced.12,13 In Figure 2, the damping rate of
EPWs is plotted vs n for different values of kλDe.  
In Figure 3, the damping rate of plasma waves in 
high-Z plasmas is given vs the relevant laser-plasma
parameters. This figure shows that in a speckled laser
beam, where hot spots can have 5× the average inten-
sity, the modified distribution functions will reduce the
threshold for high-frequency parametric instabilities
precipitously. Note, too, that the usual Bohm–Gross
frequency, as given in Eq. (9), can be in error by as
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frequency, velocity fluctuations of order 10 to 20%
have been shown to significantly reduce the gain of
SBS.31,30 The intensity-dependent frequency shift
causes an additional reduction of the same order, while
the angular dependence of this term is independent of
and very different from that of the background flow
profile.  These effects help explain the low crossed
beam gains observed in recent Nova experiments.32,30

Similar considerations for Raman lead to the picture
that intensity-dependent damping rates will dictate the
angular dependence of Raman gain.  The reduction in
damping inside hot spots will favor backscattere d
waves over side, and the ratio of the gain inside and
outside hot spots can be many orders of magnitude,
with pump depletion levels easily reached inside a sin-
gle hot spot with only moderate gain outside.  To show
this, we use a typical f/4 hot spot and calculate the SRS
gain as a function of angle for a gain length given by the
length of the I = 5Ia v e region. The integrated re f l e c t i v i t y
as a function of angle is given by the expre s s i o n1 5 , 3 0

(20)

(21)

(22)

where ζ is the direction along the scattered Raman
beam and η is perpendicular to it, the component of
the wave vector of the EPW along the scattered light
direction is , the k vector 
magnitude of the scattered light wave is 
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FIGURE 4. Frequencies and damping rates of IAWs in DLM electron
and Maxwellian ion VDFs vs ZTe/Ti for k = 2k0. The n = 2 and n = 5
cases are plotted together with the results of perturbation theory as
given in Eqs. (18) and (19). (50-00-0797-1179pb01)

FIGURE 5. Frequencies and damping rates of IAWs in DLM electron
and Maxwellian ion VDFs vs ZTe/Ti for k = 2k0. The n = 2, 3, 4 and 5
cases are shown. (50-00-0897-1602pb01)

FI G U R E 6 . F requencies and damping rates of IAWs in DLM electro n
and Maxwellian ion VDFs vs k / 2 k0. ZTe/ Ti = 2, 6, 10 and 14 are plotted
together with the approximate expressions given in Eqs. (18) and (19).
(50-00-0897-1601pb01)
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θs is the angle between the pump and scattered light
k v e c t o r s , , the disper-
sion relation of the EPW is 

the frequency of the EPW beyond the Bohm–Gross fre-
quency is δ, the dispersion relation for the scattered
light wave is , and potential
density inhomogeneities and fluctuations are given by 

In Figure 7, we plot the gain of SRS as a function of
angle for CH, Ti, and Xe, where , 
21, and 40 respectively, the electron temperature in the
plasma Te = 3 keV, the laser wavelength λ0 = 0.35 µm,
and the average laser intensity Iave = 1015 W/cm2.  
The gain exponent for straight backscatter through the

center of the hot spot where I > 5Iave is ~32 in the case
of CH with a density of 0.1nc. This is consistent with
very strongly collimated SRS emission, which has been
observed in recent Nova experiments.11 The effect for
higher-Z materials is even more dramatic, and sug-
gests the picture that steep-temperature-gradient–
driven transport off the sides of an intense hot spot,
which gives rise to depleted-tail VDFs,9 will produce
electron–plasma waves with significantly lower
Landau damping and therefore larger Raman scatter-
ing in the hot spot. Large-amplitude plasma waves
will be created by SRS inside the hot spots as the insta-
bility saturates, and large density and velocity fluctua-
tions will remain in their wake. While quantitative
numerical studies are needed to confirm the range of
validity of the following  scenario, it is hypothesized
that such SRS-dominated hot spots will not be
amenable to significant SBS growth even in the satu-
rated SRS regime. When these fluctuations have dissi-
pated their energy at typically ion-acoustic transit or
ion–ion collision time scales, SRS will return, and the
cycle will repeat itself. This model implies that in mod-
erate- to high-Z plasmas with RPP beams, SRS will
dominate the hot spots while SBS is forced to occur
well outside these regions of highest intensity. 

Nonlocal heat transport and vigorous
bremsstrahlung heating-modified distribution func-
tions, which as a class are well captured by the DLM
VDFs, can play an important role in determining when
SRS dominates hot spots and how low in density one
must go before SRS is turned off so that SBS can take
advantage of hot-spot intensities and grow to larger
levels.  In fact, a recent experiment by Montgomery17

has shown that the SBS gain increases by two orders of
magnitude in a CH plasma when the density is
reduced from 0.1nc to 0.07nc .  The relative levels of
Raman and Brillouin reflectivity measured in that
experiment as a function of density are consistent with
the picture that at the lower density, Raman is not
strong enough to dominate the hot spots, and that
Brillouin occurring in hot spots with five times the
average intensity overcomes the reduction due to a
decrease in density and produces the two orders of
magnitude increase in SBS reflectivities seen experi-
mentally.  In order to investigate further the hot-
electron dynamics and instability development in the
presence of nonlocal heat transport and steep tempera-
ture gradients in moderate- to high-Z materials,
Fokker–Planck transport calculations are required in
conjunction with parametric instability models.  We
hope to address this challenging problem next.33
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FIGURE 7. G(SRS) vs near-backscattering angles for Te = 3 keV, 
Iave =  1015 W/cm2, n/nc = 0.1, and (a) (solid line, and
dashed line in the case of fixed damping at the average intensity); 
(b)               (solid line with x’s, and dashed line with x’s in the case of
fixed damping at the average intensity); (c) (solid line with
circles) and dashed line with circles in the case of fixed damping at
the average intensity). (50-00-0797-1180pb01)
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Summary

In high-Z plasmas, or in laser hot spots with moder-
ate Z, the damping rate of an electron-plasma wave
(EPW) is substantially lower and the frequency of an
ion-acoustic wave (IAW) significantly higher than
those in a Maxwellian distribution.  EPWs and IAWs
were analyzed in flat-topped and depleted-tail electron
velocity distribution functions that arise due to nonlo-
cal heat transport and vigorous bremsstrahlung heat-
ing in high-intensity lasers. In such plasmas, SRS can
dominate the most intense laser hot spots, excluding
SBS from such hot spots unless the density is low
enough to eliminate SRS.
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